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Abstract

The objective of this paper is to calculate, model, and forecast realized return vari-

ance, using high frequency stock market index data. The approach taken differs from

the existing literature in several aspects. First, it is shown that the decay of the serial

dependence of high frequency returns with the sampling frequency, is consistent with an

ARMA process under temporal aggregation. This Þnding has important implications for

the modelling of high frequency returns and the optimal choice of sampling frequency

when calculating realized variance. Second, motivated by the outcome of several test

statistics for long memory in realized variance, it is found that the realized variance

series can be modelled as an ARFIMA process. SigniÞcant exogenous regressors include

lagged returns and contemporaneous trading volume. Finally, the ARFIMA�s forecasting

performance is assessed in a simulation study. Although it outperforms representative

GARCH models, the simplicity and ßexibility of the GARCH may outweigh the modest

gain in forecasting performance of the more complex and data intensive ARFIMA model.
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1 Introduction

A crucial element in the theory and practice of derivative pricing and Þnancial risk manage-

ment is the estimation and modelling of asset return variance. Both the Stochastic Volatility

and the Autoregressive Conditional Heteroskedasticity (ARCH) class of models have become

widely established and successful approaches, in both the theoretical and the empirical liter-

ature, to the modelling of the variance process. The objective of this paper, however, is to

explore the extent to which the use of the increasingly available intra-daily data on Þnancial

assets can be used to improve or facilitate the estimation and modelling of return variance.

To this end Merton (1980) notes that the variance (over a Þxed interval) of an iid random

variable can be estimated arbitrarily accurate by the sum of squared realizations, provided

that the data is available at a sufficiently high sampling frequency. Empirical studies, such

as French, Schwert and Stambaugh (1987), Hsieh (1991), Taylor and Xu (1997), Andersen

and Bollerslev (1998), make use of this insight and employ intra-daily return data to estimate

daily return variance by simply summing up squared intra-daily returns. In the literature this

variance measure is referred to as �realized variance� or more commonly �realized volatility�

(variance being volatility squared). In a recent paper Andersen et al. (2001a) has shown in

a continuous time setting that when the return process follows a special semi-martingale, the

sum of squared returns will yield a consistent estimate for the integrated variance of the return

process:

�The mechanics are simple - we compute daily realized volatility simply by sum-

ming up squared returns - but the theory is deep: by sampling intra-day returns

sufficiently frequently, the realized volatility can be made arbitrarily close to the

underlying integrated volatility, the integral of instantaneous volatility over the in-

terval of interest, which is a natural volatility measure� - (Andersen et al. (2001a))

Although the work by Merton (1980) and Andersen et al. (2001a) is taken as a start-

ing point for the calculation and analysis of the realized variance measure, the present study

is distinguished from the existing literature in several ways. First and foremost, the choice

of sampling frequency and the impact that market micro structure induced autocorrelations

have on realized variance are discussed in considerable detail; issues to which has been paid

surprisingly little attention so far (a notable exception is Bai, Russell, and Tiao (2000)). The

serial dependence of high frequency returns is analyzed and it is found that the autocorrela-

tion structure (magnitude and rate of decay) of returns at different sampling frequencies is
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consistent with the results on temporal aggregation of an ARMA process. This Þnding has

important implications for the choice of optimal sampling frequency when calculating the real-

ized variance measure. 10 years of minute by minute FTSE-100 index returns are employed to

illustrate that when the sampling frequency is not carefully chosen, solely summing up squared

returns can seriously under- or overestimate the average daily return variance. Second, a real-

ized variance series for the FTSE-100 index returns is constructed using 25 minute return data

which is modelled subsequently. It is found that an ARFIMA speciÞcation, including some

exogenous variables such as lagged returns and trading volume, models the series well. This

extends the work of Andersen and Bollerslev (1998) which uses the realized variance estimates

for evaluation of the forecasting performance of their GARCH model or that of Andersen et

al. (2000a,b) which analyzes the properties of the data. The regression coefficients of the

lagged return variable are used to test for the presence of Black�s leverage effect. Third and

Þnally, the forecasting performance of the ARFIMA model for realized variance is assessed

in a simulation study. The results indicate that the ARFIMA model for realized variance

outperforms representative GARCH-class models. It is noted, however, that the simplicity of

the GARCH together with its ßexibility to account for persistence in return variance, may

outweigh the modest gain in forecasting performance of the more complex and data intensive

ARFIMA model.

The remainder of this paper is structured as follows. Section 2 discusses the calculation of

realized variance and proposes a model for daily as well as intra-daily returns. The realized

variance series is constructed and a careful analysis shows that most of the stylized facts, as

documented in the recent literature, can be conÞrmed for the FTSE-100 index data. Section

3 models realized variance as an ARFIMA process. Section 4 compares the forecasting perfor-

mance of the ARFIMA model for realized variance with conventional GARCH type models.

Section 5 concludes.

2 Realized Variance

The term �realized variance� refers to the sum of squared intra-period returns, being an

estimator for the average or integral of instantaneous variance over the interval of interest.

In fact, in a continuous time framework, it has been shown by Andersen et al. (2001a) that

when the return process is assumed to follow a special semi-martingale the realized variance

measure can be made arbitrarily close to the integral of instantaneous variance, provided that
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the intra-period returns are sampled at a sufficiently high frequency. In the present context,

however, the focus will be on a discrete time model which has the advantage that the impact

of market micro structure effects, present in returns sampled at high frequency, on the realized

variance measure can be analyzed in a straightforward fashion. It will be shown that when

intra-period returns are serially correlated, the realized variance measure will yield a biased

estimator of the average true variance over the interval of interest. Throughout the remainder

of the paper the interval of interest is set to one trading day.

Let St,j denote the jth intra day−t price of the security under consideration and Ψt,j be
the sigma Þeld generated by {Sa,b}a=t,b=ja=−∞,b=0. Under the assumption of N equally time-spaced

intra-daily observations of S (j = 1, . . . , N), the daily return is deÞned as:

Rt = lnSt,N − lnSt−1,N ,

t = 1, . . . , T . At sampling frequency f, we can construct Nf = N
f
intra-daily returns:

Rf,t,i = lnSt,if − lnSt,(i−1)f ,

for i = 1, . . . , Nf and St,0 = St−1,N . In the following, it is assumed that the asset�s (excess)

return at the daily frequency can be characterized as:

Rt = σtεt,

where εt ∼iid N (0, 1) and σ2t represents the day−t return variance. Note that EΨt,0 [R2t ] = σ2t
and that VΨt,0 [R

2
t ] = 2σ

4
t . Now consider the situation in which intra-daily returns, at sampling

frequency f , are uncorrelated and can be characterized as:

Rf,t,i = σf,t,iεf,t,i,

where εf,t,i ∼iid N
¡
0, N−1

f

¢
and Rt =

PNf
i=1Rf,t,i by deÞnition. Since intra-daily returns are

assumed to be uncorrelated, it directly follows that EΨt,0
hPNf

i=1R
2
f,t,i

i
= EΨt,0 [R

2
t ] and hence

σ2t = N−1
f

PNf
i=1 σ

2
f,t,i. As a results, two unbiased estimators for the average day−t return

variance exist, namely the squared day−t return and the sum of squared intra day−t returns.
It is noted, however, that while VΨt,0 [R

2
t ] = 2σ

4
t the following holds:

EΨt,0

 NfX
i=1

σ2f,t,iε
2
f,t,i

2 = 3N−2
f

NfX
i=1

σ4f,t,i + 2N
−2
f

Nf−1X
i=1

NfX
j=i+1

σ2f,t,iσ
2
f,t,j,
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and therefore:

VΨt,0

 NfX
i=1

R2f,t,i

 = 2

Nf

NfX
i=1

σ4f,t,i
Nf

<
2

Nf

 NfX
i=1

σ2f,t,ip
Nf

2 = VΨt,0 £R2t ¤ .
In words, the average daily return variance can be estimated more accurately by summing up

squared intra-daily returns rather than calculating the squared daily return. In addition, when

returns are observed (and uncorrelated) at any arbitrary sampling frequency, it is possible to

estimate the average daily variance free of measurement error as limNf→∞ VΨt,0
hPNf

i=1R
2
f,t,i

i
=

0. The only (weak) requirement on the dynamics of the intra-daily return variance for the above

to hold is that
PNf

i=1 σ
4
f,t,i ∝ N1+c

f where 0 ≤ c < 1. Finally, note that although the daily

realized variance measure employs intra-daily return data, there is no need to take the (well

documented) pronounced intra-day variance pattern of the return process into account. This

feature of the realized variance measure contrasts sharply with popular parametric variance

models which generally require the explicit modelling on intra-daily regularities in return

variance.

The focus in the remainder of this section will be on how the increasingly available high

frequency Þnancial data can be used for the purpose of variance estimation. In particular,

minute by minute FTSE-100 index level data1 will be used to investigate whether the method

of calculating the realized variance measure, being the sum of squared intra-daily returns, will

yield satisfactory results. To this end, the decomposition of the daily return into the sum of

Nf intra-daily returns can be used to derive the following expression:

R2t =

 NfX
i=1

Rf,t,i

2 = NfX
i=1

R2f,t,i + 2

Nf−1X
i=1

NfX
j=i+1

Rf,t,iRf,t,j. (1)

When the assumption of uncorrelated returns at sampling frequency f is satisÞed, the

second term on the right hand side of expression (1) is zero in expectation and the realized

variance measure will therefore yield an unbiased estimate of the average day−t return vari-
ance. However, as noted by, for example, French et al. (1987), when the returns are positively

correlated, solely summing up squared returns will underestimate the average daily variance;

1The dataset contains minute by minute data on the FTSE-100 index level, starting May 1, 1990 and

ending January 11, 2000. Trading hours are 08:30-16:30, Monday to Friday until September 14, 1994 and

8:30-16:00 afterwards (minute data from 08:35 until 16:10 is available). The total number of observations is

just over 1.1 million.
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the cross multiplication of returns will be positive on average. The reverse will occur for

negatively autocorrelated returns.

To illustrate this, a dataset containing minute by minute data on the level of the FTSE-100

stock market index is employed to calculate the 10 year average (1990-2000) of the two terms on

the right hand side of expression (1) for sampling frequencies between 1 and 45 minutes. The

results are displayed in Figure 1.1. It is clear that the Þrst term, the realized variance measure,

increases with a decrease in sampling frequency while the second term, the summation of

cross multiplied returns, decreases. The positivity of the second term indicates that the

FTSE-100 returns are positively correlated, introducing a downward bias into the realized

variance measure (up to 35% when using minute by minute data!), while its decreasing pattern

demonstrates that this dependence, and consequently the bias, diminishes when sampling is

done less frequent. This term can therefore be interpreted as the autocovariance induced bias

of the realized variance measure and will be referred to as the �autocovariance bias factor� in

the remainder of the paper.

Although, in the context of efficient markets, the Þnding of correlated intra-daily returns

may at Þrst sight appear puzzling, it has a sensible explanation in the context of the market

microstructure literature2. One of the most prominent hypotheses which can be used to explain

the observed positive autocorrelation in stock index returns is non-synchronous trading. The

basic idea is that when individual stocks contained in an index do not trade simultaneously, the

contemporaneous positive autocorrelation among the components will induce serial correlation

in the index returns. Intuitively, when the index components incorporate non-synchronously

the shocks to a common factor driving their price, this will result in a sequence of correlated

price changes at the aggregated or index price level. This phenomenon, which is consistent

with the above empirical Þndings3, obviously disappears when sampling frequency decreases.

It has been shown that average daily return variance can be estimated consistently by

the realized variance measure, provided that the intra-daily returns are serially uncorrelated.

When the intra-daily returns are correlated, realized variance will either overestimate (with

negative correlation) or underestimate (positive correlation) the average daily return variance.

2See e.g. Campbell, Lo and MacKinlay (1998), Lequeux (1999), Madhavan (2000) or Wood (2000).
3The reverse would occur for a single asset. The serial correlations of returns, if present, would likely be

negative thereby introducing an upward bias in the realized variance measure. The negative autocorrelation

can be attributed to the bid-ask bounce; in a market where no new information arrives, the stock price is

expected to bounce between the bid and the ask price whenever a trade occurs.
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Correcting for the bias term, it is known after all, is not desirable as this is equivalent to using

the squared daily return to estimate daily realized variance. Hence, when the intra-daily

return data at the highest frequency available is serially correlated, one will need to aggregate

the returns down to a frequency at which the correlation has disappeared. Plotting both the

sum of squared intra-daily returns and the autocovariance bias factor versus the sampling

frequency, as is done in Figure 1.1, proves a very helpful and easily implementable strategy

to determine the frequency4 at which the correlation has died off. The �optimal� sampling

frequency is chosen as the highest available frequency for which the autocovariance bias term

has disappeared. Based on these observations, the sampling frequency for estimating realized

variance will be set to 25 minutes (f = 25).

2.1 Serial Correlation, Time Aggregation & Sampling Frequency

Prior to the estimation and analysis of realized variance, a closer look is taken at the au-

tocovariance bias term in relation to the dynamic properties of the intra-daily returns at

different sampling frequencies. Table I (and Figure 1.1) reports some descriptive statistics for

the FTSE-100 return data at different sampling frequencies. Both the order and the magni-

tude of the autocorrelations decrease with a decrease in sampling frequency. The Box-Ljung

statistic comes down from around 800 for minute data, to around 20 for daily data (the 95%

critical value of this test is 18.31). The Durbin Watson test statistic increases from about 1.6

for the minute data to 2.0 for the daily data. Finally, it is noted that the Þrst 20 autocorre-

lations calculated for the minute by minute data appear signiÞcant while only the Þrst order

autocorrelation of daily data is signiÞcant. These Þndings suggest that a realistic statistical

model for intra-daily returns should have a more ßexible structure than the standard model

for daily returns. In the remainder of this section it will be shown that modelling intra-daily

returns as an ARMA process is a natural and, as it turns out, successful choice for it is well

suited to account for the serial dependence of returns at various sampling frequencies. From

a market micro structure point of view, the AR part will arguably be able to capture any

autocorrelation induced by non-synchronous trading while the MA part will account for po-

tential negative Þrst order autocorrelation induced by the bid ask bounce. Moreover, within

this framework it can be shown that the decreasing order and magnitude of autocorrelations

4Independent and concurrent work of Andersen, Bollerslev, Diebold and Labys (2000), Corsi, Zumbach,

Müller and Dacorogna (2001) have proposed a closely related approach for determining the optimal sampling

frequency.



Calulating, Modelling and Forecasting Realized Return Variance 8

with the sampling frequency is a consequence of temporal aggregation of the return process.

Suppose that returns at the highest sampling frequency, R1 (the t subscript is momentarily

dropped for convenience), can be described as an ARMA(p,q) process:

α (L)R1,i = β (L) ε1,i,

where α (L) and β (L) are lag polynomials of lengths p and q respectively. Consider the case

where all the reciprocals of the roots of α (L) = 0, denoted by θ1, ..., θp, lie inside the unit

circle. The model through which the returns at an arbitrary sampling (or aggregation) fre-

quency can be represented is derived using the results of Wei (1981) on temporal aggregation5

(see appendix for a summary). In particular, when R1 follows an ARMA(p,q) process as

given above, the returns sampled at frequency f , denoted by Rf , can be represented by an

ARMA(p,r) process:

pY
j=1

³
1− θfjLf

´
Rf,i =

pY
j=1

1− θfjLf
1− θjL

1− Lf
1− L β (L) εf,i,

where r equals the integer part of p + q−p
f
, εf,i =

Pf−1
j=0 ε1,fi−j. Due to the invertibility of

the AR polynomial, the above model can be written as an MA(∞) process with parameters©
ψj
ª∞
j=0

and ψ0 = 1. Let ϕfh denote the h
th autocovariance of the temporally aggregated

returns at frequency f , for which it turns out that:

ϕfh = E [Rf,iRf,i−h] ∝
∞X
j=0

 jX
i=max(0,j−f+1)

ψi

 j+fhX
i=j+1+f(h−1)

ψi

 , (2)

As the ψj coefficients decay exponentially fast with j, the serial correlation disappears

under temporal aggregation. To see this, let ψj = wδj for |δ| < 1 and w some positive

constant. It can now be shown that:

ϕfh ∝
∞X
j=0

 jX
i=0

wδi
j+fhX

i=j+f(h−1)
wδi

 ≤ w2

(1− δ)3 δ
f(h−1)

from which it can be seen that the serial correlation disappears when either the sampling

frequency, f , or the displacement, h, increases. In fact, Wei (1981) has shown that the limit

5Temporal aggregation for ARMA models is discussed in Brewer (1973), Tiao (1972), Wei (1981), Weiss

(1984) and the VARFIMA in Marcellino (1999).
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model of an ARMA(p,q) process under temporal aggregation is an ARMA(0,0) or equivalently

white noise.

Note that these theoretical properties of the ARMA process appear very much in ac-

cordance with the reported empirical properties of the return process at different sampling

frequencies. More speciÞcally, at high sampling frequencies the ARMA model can account

for the observed serial dependence while at lower sampling frequencies these dependencies die

off as a consequence of temporal aggregation of the return process. In addition, as the limit

model of the ARMA(p,q) model is an ARMA(0,0) under temporal aggregation, the model

speciÞcation for returns at the intra-daily frequency does not necessarily conßict with the

model for daily returns.

The above expression for the autocovariance function of the ARMA process can be used to

check the consistency of the model with the properties of the data by comparing the temporal

aggregation implied decay of the autocovariance bias term with the empirically observed one.

To this end various ARMA models are estimated using the minute by minute returns and it is

found that an ARMA(6,0) model yields satisfactory results6 with uncorrelated residuals and

relatively stable coefficients over time. Using solely one set of ARMA(6,0) parameters for the

minute data, autocovariances for the estimated return process at various sampling frequencies

are �implied� using expression (2). It is noted that:

EΨt,0

Nf−1X
i=1

NfX
j=i+1

Rf,t,iRf,t,j

 = Nf−1X
h=1

(Nf − h)ϕfh, (3)

Hence, the �aggregation implied� autocovariance estimates can be used to calculate the �ag-

gregation implied� autocovariance bias term as in expression (3). Figure 1.2 in the appendix

demonstrates that the empirical and theoretically implied curves are remarkably close. The

implications of this Þnding are twofold. First, it shows that the ARMA model is a good

description of the return data sampled at different frequencies; the decay of the (market -

microstructure - induced) serial dependencies in high frequency returns is consistent with the

decay of an ARMA process under temporal aggregation. Second, relying on the close corre-

spondence between the empirical and theoretically implied autocovariance bias factor one can

locate the optimal frequency, that is, the highest sampling frequency available for which the

6Although the residuals are highly leptokurtic and heteroskedastic, and hence the MLE is not efficient,

the parameter estimates are consistent (see e.g. Amemiya (1985)). Moreover, the efficiency loss should be

unimportant given the large amount of data.
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autocovariance bias term has died off, using solely a single set of ARMA parameter estimates.

2.2 Stylized Facts of Realized Variance

High frequency data have already been analyzed extensively by a number of studies7. The

results regarding the characteristics of high frequency Þnancial data obtained so far (relevant

for this study) can be summarized as follows. First, the unconditional distribution of daily

returns is not skewed, but it does exhibit excess kurtosis. Daily returns are not autocorrelated

(except for the Þrst order in some cases). Second, the unconditional distributions of realized

variance (calculated as the sum of squared intra-daily returns sampled at frequencies between

5 and 20 minutes depending on the dataset used) and variance are distinctly non-normal

and extremely right skewed, whereas the natural logarithm of the standard deviation is close

to Gaussian. Third, the log of the realized variance displays a high degree of (positive)

autocorrelation which dies out very slowly. Fourth, realized variance does not seem to have a

unit root, but there is clear evidence of fractional integration8, roughly of order 0.40. Fifth9,

daily returns standardized by the realized variance measure are (nearly) Gaussian.

In order to complement and widen the focus of the research in this area European stock

market index data (minute by minute data on the FTSE-100 from May 1990 until January

2000) is utilized. As mentioned above, daily realized variance on the FTSE-100 is estimated

using the high frequency data sampled at f = 25. This results in a total of 2445 realized vari-

ance estimates which are reported in Figure 2.1. In the appendix, some descriptive statistics of

realized variance, the log of realized variance, the daily return, and daily return standardized

by realized variance are reported in Table II. The stylized facts are essentially conÞrmed for

the dataset under study. More speciÞcally, the distribution of daily returns has fat tails but is

not very skewed and variance clustering is clearly present in the return series (not reported).

The strong evidence found regarding the normality of the daily returns standardized by real-

ized variance indicates that similar results of Andersen et al. (2001b) on exchange rate data

can be extended to stock market index data. The unconditional distribution of the realized
7See e.g. Anderson, Bollerslev, Diebold and Labys (2000a,b), Froot & Perold (1995), Goodhart & O�Hara

(1997), Hsieh (1991), Lequeux (1999), Stoll & Whaley (1990), Zhou (1996).
8See e.g. Baillie (1996), Bollerslev and Mikkelsen (1996, 1999), Breidt et. al. (1998), Comte and Renault

(1998), Liu (2000), Lo (1991).
9In a multivariate setting it is found that the distribution of correlations between realized variance is close

to normal with positive mean, and that the autocorrelations of realized correlation decays extremely slow.
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variance is signiÞcantly skewed and exhibits severe kurtosis, while the unconditional distribu-

tion of log realized variance is much less skewed and displays signiÞcantly reduced kurtosis.

Furthermore, the correlogram for the realized variance measure decays only very slowly but

the Augmented Dickey Fuller test10 strongly rejects the null hypothesis of a unit root (Table

II, Figure 2.3). This last observation is usually indicative for fractional integration.

3 Modelling Realized Variance

Having calculated and analyzed the realized variance measure, the focus is on Þnding a statis-

tical model that captures the main characteristics of this time series. Some observations from

the previous section have to be taken into account when deciding on the modelling strategy.

First of all, the beneÞts of the log transformation of realized variance indicate that log real-

ized variance should be modelled instead of the original series. Second, the absence of a unit

root and the highly persistent autocorrelation point into the direction of fractional integration

(see appendix for a summary on the concept of fractional integration). This section further

explores the characteristics of the data and Þnds that the log of realized variance series can

be modelled well using a fractionally integrated ARMA model. By means of an application,

the existence of the Black leverage effect is tested for within the ARFIMA framework. The

present section concludes with a discussion of the impact that structural breaks have on the

empirical Þndings.

3.1 Fractional Integration & Realized Variance

Driven by the remarkable resemblance between the correlogram displayed in Figure 2.3 in

the appendix and the theoretically implied correlogram for fractionally integrated process,

the focus is on fractionally integrated models. Prior to estimation, some informal tests are

performed to strengthen this motivation.

The fractional difference operator is applied to the log of the realized variance series for

various values of d (the sequence given by expression (5) in the appendix is truncated at

h = 1000). It is found that autocorrelations are drastically reduced for values of d between

10Augmented Dickey Fuller test: 4xt = α+ βxt−1 +
Pn
i=1 γi4xt−i + εt. Rejection of H0 : β = 0, implies

that xt is I(0). The speciÞcation of the lag length, which we set equal to 5, assumes that εt is white noise.

The critical value of this test equals -2.865 at 5% conÞdence level and -3.439 at 1%.
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0.25 and 0.45 and that they fall nicely in between the 95% conÞdence bounds (±2N−1/2 where

N denotes the number of observations). For instance, see Figure 2.4 in the appendix where

d is set equal to 0.40. Moreover, the long �waves� in log realized variance disappear almost

entirely after fractional differencing (Figure 2.1 versus 2.2). A supplementary test consists of

plotting log autocorrelations versus the log of displacements. It is known that for a fractionally

integrated process the autocorrelation function decays at a hyperbolic rate as opposed to the

autocorrelation function of an I(0) process which decays at an exponential rate. Therefore the

log of the autocorrelation function will yield a linear relationship in terms of log displacement,

i.e. logϕh ∝ (2d−1) log h. Figure 2.5 in the appendix shows that plotting logϕh against log h
yields a linear relationship up to approximately h = 100. An OLS regression is performed to

determine the slope. Using the complete sample (h = 250) implies that d ≈ 0.37. Ignoring

the last 150 autocorrelations implies that d ≈ 0.43. Although the graph does not strongly

indicate a linear relationship, the results are not taken as a rejection of fractional integration.

The Þnal check on the presence and degree of fractional integration is done in the frequency

domain. Two standard tests are employed. The Þrst one has been developed by Geweke

and Porter-Hudak (1983, GPH hereafter), while the second one by Robinson (1995). A short

summary of both the estimators can be found in the appendix. To implement both methods

a bandwidth parameter m, controlling the range of periodic frequencies used, has to be set.

Although it is required that m grow at a slower rate than the sample size T , this does not

guide us as to what the value of m should be. In the present study, d is estimated for a range

of m between11 25 and 275. The results of this estimation are summarized in Figure 2.6 where

the GPH estimates together with the Robinson estimates are plotted as a function of m. For

small m, the two alternative estimates both fall into the non-stationary region while for large

m (above 150) they are both below 0.5. Although it is clear from this that the value for d

will be close to 0.5, it is difficult to judge on the stationarity of the process as the choice of m

is relatively arbitrary. In summary, the reported test results provide good reasons to believe

that the (log) realized variance series is fractionally integrated. The results are ambiguous as

to what the value for d will be, although it seems clear that it will most likely be close to 0.50.

11The sample size is 2445 and hence the range of m is between T 0.40and T 0.70. This is in line with e.g.

Bollerslev, Cai and Song (2000) who sets m = T 0.50 or Dittmann and Granger (2000) who set m = T 0.8.
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3.2 Empirical Results

Motivated by the preliminary tests discussed above, the focus of the modelling approach will

center around the ARFIMA speciÞcation. Consider the following model:

α(L)(1− L)d £ln eσ225,t − π0Xt¤ = β(L)εt,
where eσ225,t denotes the day−t realized variance measure calculated using 25 minute intra-daily
returns, Xt is a vector of exogenous variables, α(L) is a lag polynomial of order p, β(L) a lag

polynomial of order q and εt is a residual term. Under the assumptions that the roots of α(L)

and β(L) are outside the unit circle, roots of α(L) are simple, residuals are iid Normal and

d < 1
2
, the ARFIMA model parameters are estimated in Ox12 using the maximum likelihood

estimator of Sowell (1992). The model could alternatively be estimated with the popular and

easily implementable two-step procedure in which the fractional parameter is estimated in the

Þrst step (by e.g. the GPH or Robinson estimator), while the remaining ARMA coefficients

are estimated in the second step on the fractionally differenced data by ordinary least squares.

As it has been found that the ARMA coefficients are generally estimated inaccurate or biased

this way (see e.g. Smith et al. (1997)), the Sowell procedure is preferred as it allows for the

simultaneous estimation of the model parameters.

In order to address the concern that the long memory may be induced by infrequent

structural breaks13 (see e.g. Granger (1999), Diebold and Inoue (1999) and Granger and

Hyung (1999)) the above model is estimated on various subsamples. Table 3 in the appendix,

reports the estimation results for the ARFIMA model (where p = q = 1) for two different

samples, namely Sample I which runs fromMay 1, 1990 until June 15, 1997 (1800 observations)

and Sample II which is the full sample (2444 observations). As the fractional parameter

remains highly signiÞcant for the different subsamples considered, it is argued that the realized

variance series clearly exhibit a long memory feature that is not caused by structural breaks.

For both samples, the fractional parameter d is indeed between 0.40 and 0.50, conÞrming the

preliminary analysis above. In fact, based on the t−statistic one cannot reject that d > 0.5
12See Doornik and Ooms (1998) for documentation on the ArÞma package.
13A simple and representative model that can cause long memory is the stochastic break model which takes

the following form: yt = ut + εt, where ut = ut−1 + qt−1ηt, εt ∼ iid N (0,σ2y), ηt ∼ iid N (0,σ2u) and qt equals
0 with probability p and 1 with probability 1− p. Diebold and Inoue (1999) note that in order to achieve a
slowly declining autocorrelation function, whatever the model may be, the key idea is to let p decrease with

the sample size so that regardless of the sample size, realizations of the process tend to have just a few breaks.
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at a 95% conÞdence level: the realized variance series may be non-stationary. Regarding

the inclusion of exogenous variables14, lagged returns and contemporaneous trading volume

are considered. This choice of variables is motivated by Black (1976) and Lamoureux and

Lastrapes (1990a) respectively.

Black�s leverage states that negative returns have a larger impact on future variance than

do positive returns. One possible rationale for this is that when equity value decreases the

debt-to-equity ratio increases, thereby raising the riskiness of the Þrm as manifested by an

increase in future variance. Modifying the above model as follows:

π0Xt = ζ+1 R
+
t−1 + ζ

−
1 R

−
t−1 + ...+ ζ

+
mR

+
t−m + ζ

−
mR

−
t−m,

where R+ (R−) is a vector containing the positive (negative) daily returns and zero otherwise,

allows an assessment of the explanatory power of lagged returns while the relative magnitude

of the ζ coefficients will indicate whether a leverage effect is present. From the estimation

results reported in the appendix (Table III) it can be observed that the log likelihood value

drastically increases when lagged returns are added and that the AIC information criteria

drops from about 0.8 to 0.5. Moreover, coefficients on negative returns are consistently above

coefficients on positive returns. Although this observation is indicative for the presence of the

leverage effect, its signiÞcance is tested for by reformulating the model as follows:

ζ1Rt−1 + ζ1 |Rt−1|+ ...+ ζhRt−h + ζh |Rt−h| .

Note that ζ i =
1
2
(ζ+i −ζ−i ) and ζ i = 1

2
(ζ+i +ζ

−
i ). Where ζh is signiÞcantly negative

15, it can

be concluded that the leverage effect is signiÞcant at horizon h. Estimation results16 indicate

that the leverage effect, as proposed by Black (1976), is present at the Þrst three horizons and

is insigniÞcant afterwards. Note that although the statistical signiÞcance of this Þnding does

not necessarily imply an economic signiÞcance, it does provide support for the GJR-GARCH

and EGARCH speciÞcations which explicitly account for the asymmetric effect that returns

have on future variance.
14Glosten, Jagannathan and Runkle (1993) Þnd that the short term interest rate has a signiÞcant positive

effect on stock market volatility. The 1 month UK Interbank rate is added, but for the dataset under study

it does not appear to be a signiÞcant regressor. The data frequency (daily) in the present analysis may well

be too high for the interest rate to have a signiÞcant inßuence.
15Note that r = r+ − r− and |r| = r+ + r−. Therefore, ζ+i = ζi + ζi and ζ−i = ζi − ζi. For leverage to be

present it is required that ζ−i − ζ+i = −2 · ζi > 0 or ζi < 0.
16The estimates for ζ1, ζ2 and ζ3 are −4.60 (4.21), −5.58 (5.13) and −3.81 (3.49) respectively. t-values are

in parenthesis.
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The inclusion of (log) contemporaneous trading volume has been suggested by Lamoureux

and Lastrapes (1990a). They discuss a model in which heteroskedasticity results from time

dependence in the process which governs the information ßow to the market. Taking trading

volume as a proxy for the information arrival rate they argue (and show empirically) that (i)

trading volume is positively related to return variance and (ii) the persistence of return vari-

ance decreases (or disappears) when trading volume is accounted for. Based on the estimation

results reported in the appendix, where λ0 denotes the regression coefficient of log contempo-

raneous trading volume, it is found that trading volume further improves the Þt of the model

and, consistent with the theory, has a signiÞcant positive effect on variance. The fractional

parameter d does, however, not decrease upon inclusion of trading volume indicating that the

persistence of the variance process remains unchanged upon conditioning on trading volume.

4 Forecasting Realized Variance

Ultimately the goal of analyzing and modelling variance is to use the resulting model for return

variance forecasting. Obviously, this is of great interest to the Þelds of risk management and

derivative pricing. This section assesses the forecasting ability of the ARFIMA model for

daily log (realized) variance and takes a standard GARCH(1,1) model, implemented with

daily returns, as a benchmark. As the dataset in this study does not allow us to study the

forecasting performance of the models in depth, a simulation study is undertaken.

4.1 Simulation Design

The approach taken is as follows. In every simulation run a time series of 2750 daily log

(realized) return variances is generated according to an ARFIMA(0,d,0) process:

(1− L)d £ln σ2t − µ¤ = εt,
where εt ∼i.i.d.N (0,42

ε). The rationale for excluding the autoregressive and moving average

terms, which govern the short run dynamics of the process, is that including or excluding them

is unlikely to change the results qualitatively. Motivated by the empirical results of the last

section the mean µ = 10, the fractional parameter d = 0.45 and the residual variance 42
ε =

0.15. To obtain forecasts of ln σ2, note that ET−1
£
(1− L)d (ln σ2T − µ)

¤
= 0 or equivalently

ET−1 [ln σ2T − µ] = −P∞
h=1

Γ(h−d)
Γ(h+1)Γ(−d)

¡
lnσ2T−h − µ

¢
. This autoregressive representation of
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ln σ2T can be used to recursively compute the s−step ahead forecasts (where the inÞnite AR
polynomial is truncated at h = 2500 lags for practical implementation). The s−step ahead
forecast of log realized variance will have a forecast error ²t,s = Et

£
ln σ2t+s

¤ − ln σ2t+s, that is
normally distributed with mean 0 and variance 42

s. As a consequence the forecast error for

realized variance17, ²t,s = Et
£
exp(ln σ2t+s)

¤− σ2t+s, will have a log normal distribution with a
mean equal to exp

¡
1
2
42
s

¢
. Given that the focus is on the realized variance forecasts (and not

the log of it), this �bias� is corrected for by using an estimate of 42
s.

In every simulation run the fractional parameter of the ARFIMA model is estimated using

the GPH estimator. A density of the estimates is given in Figure 3.4. To assess the forecasting

performance of the ARFIMA model for realized variance the GARCH(1,1) model, motivated

by its widespread usage in variance modelling and forecasting, is taken as a benchmark. Daily

return data, which are needed for the implementation of the GARCH model, are constructed

by multiplying the simulated realized variance series with an iid standard normal random

variable. To avoid re-estimation of the GARCH parameters at every simulation run α1 and

β1 are Þxed while the intercept, ω, is set such that the unconditional mean of the GARCH

process, ω
1−α1−β1 , equals the estimated unconditional variance of the return process. Regarding

the choice of α1 and β1, two cases are considered. In the Þrst model speciÞcation, which is

referred to as �GARCH1�, α1 = 0.90 and β1 = 0.05. In the �GARCH2� speciÞcation the

persistence of the variance process is increased by increasing α1 to 0.94 while leaving β1
unchanged. The s−step ahead forecast of daily realized variance generated by the GARCH
model, bσ2T+1|T , is given by bσ2T+s|T = ω(1−(α+β)s−1)

1−α−β + (α+ β)s−1 bσ2T+1|T . Note that the long run
forecast tends to the unconditional mean of the variance process exponentially fast. Finally,

the information set for forecasting consists of the Þrst 2500 observations while the forecasting

horizon, s, takes on values between 1 and 250 (one day up to one year). The simulation is

repeated k = 5000 times.

4.2 Performance Measurement and Simulation Results

For notational convenience let bΣs,i|T =Ps
j=1 bσ2T+j,i|T ; the forecasted cumulative realized vari-

ance over a speciÞed forecast horizon s starting at period T . The subscript i = 1, . . . , k

denotes the simulation run. Analogously, deÞne Σs,i|T =
Ps

j=1 σ
2
T+j,i as the cumulative true

17Note that the simulated realized variance series will be log normal and have an unconditional mean equal

to exp
£
µ+ 1

2c42
ε

¤
where c =

P∞
h=0

h
Γ(h−d)

Γ(h+1)Γ(−d)
i2
. For d = 0.45 we have c ≈ 2.5 (we cut of the inÞnite

summation at h = 2500) which corresponds to an annual return volatility of about 15%.
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variance over a speciÞed forecast horizon s starting at period T . The forecasting perfor-

mance of each model is measured by computing the sum of squared error criteria: SSE(s) =rPk
i=1

hbΣ2s,i|T − Σ2s,i|Ti2. To measure potential consistent over or under estimation the ratio
of forecasted and actual average realized variance are computed for the different forecasting

horizons: RFA(s) =
Pk

i=1
bΣ2s,i|T/Pk

i=1Σ
2
s,i|T .

The simulation results are reported in the appendix. Figure 3.1 demonstrates that the

forecasts for all models and all horizons are virtually unbiased. For forecasts up to a year the

maximum under or over estimation of the accumulated realized variance is about 2.5% of the

actual value. The sum of squared error criteria, which is used to assess the models� forecasting

performance, is plotted in Figure 3.2. Not surprisingly, it is found that the ARFIMA model

does the best job for all horizons considered. However, the difference in SSE between the

ARFIMA and GARCH model for forecasting horizons up to say 3 months is small. For longer

forecasting horizons the ARFIMA clearly outperforms the GARCH. This can be attributed

to the ARFIMA model�s ability to account for the long memory property of the log realized

variance series. The standard deviations of forecasting errors are plotted in Figure 3.3; the

ARFIMA model has the lowest forecast error variance for all horizons. Finally, the standard

deviation, skewness and kurtosis of the forecast errors are calculated (not reported). The

results indicate that both skewness and kurtosis are almost identical for the different models.

Moreover, they decrease with the forecast horizon; skewness from about −1.5 for daily horizon
to −0.5 for yearly horizon. Kurtosis from 8.5 for daily horizon to about 4.5 for yearly hori-

zon. Some complimentary simulations are performed to investigate the model and parameter

estimation risk but it is found that for both the ARFIMA and the GARCH model this risk

appears to be negligible. The naive and simple estimation procedure of the GARCH yields

sensible forecasts while the ARFIMA model�s forecasting performance is insensitive to �noisy�

input values of the fractional parameter.

The results reported above suggest that the ARFIMA model, as expected, outperforms

the representative GARCH model according to all the criteria used. Several points should,

however, be noted. The forecasts of the ARFIMAmodel are obtained from a truncated inÞnite

autoregression, generally including a thousand lags or more. In contrast, forecasts of the

GARCH model can be constructed using solely one lagged return and conditional variance

estimate. Moreover, the GARCH model can be implemented with daily returns while the

ARFIMA model requires intra-daily return data for the calculation of the realized variance

measure. It is therefore clear that the ARFIMA model will be more difficult to implement in
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practise than the GARCH model. In addition, for a given forecasting horizon, the persistence

of the misspeciÞed GARCH can be controlled for by Þxing the parameters to the appropriate

values so as to minimize the difference in forecasting performance with respect to the ARFIMA

model; while for short horizon forecasting the ßexibility of the GARCH is more important

than its persistence, the opposite is true for long horizon forecasting where a high persistence

is needed to counter the long memory property of the variance process (i.e. �GARCH1 versus

�GARCH2� in Figure 3.2 and 3.3).

5 Summary

Minute by minute data on the FTSE-100 stock market index have been employed to calculate

and analyze daily realized variance. It has been shown that in order to implement the �sum of

squared returns� approach to calculate realized variance, a careful check on serial dependence

in high frequency returns is required so as to avoid serious biases in the resulting measure for

average daily return variance; i.e. for the FTSE-100 data this (downward) bias amounts up to

35% for the minute data. In addition, it has been shown that the decay of serial dependence

with the sampling frequency is consistent with an ARMA model under temporal aggregation.

This Þnding can be used to set the �optimal sampling frequency�, that is, the highest possible

sampling frequency at which the autocovariance bias factor is negligible. Motivated by several

test statistics for the presence of long memory, the realized variance time series is modelled as

an ARFIMA model. Lagged returns and trading volume are found to be signiÞcant regressors.

The Black leverage effect is tested for and found to be present at horizons of one to three days.

This Þnding is supportive for asymmetric GARCH models such as the EGARCH and GJR

GARCH model. Contemporaneous trading volume is helpful in explaining the variation in

realized variance, although the persistence of the process remains unchanged upon inclusion

of this variable. In a simulation study the forecasting performance of the ARFIMA model for

daily (realized) variance is assessed and it is found that it outperforms conventional GARCH

type models. It should be noted, however, that although the ARFIMA model works best, its

implementation requires much more data than the GARCH. The relatively small loss at short

horizons together with the ßexibility of the GARCH to account for persistence in the variance

process, make it a reasonable alternative to the complicated and data intensive ARFIMA

model for realized variance.
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A Appendix: Empirical Results

A.1 Descriptive Statistics and Estimation Results

Frequency Skew Kurtosis BL (10) DW ϕ1 ϕ2 ϕ3 ϕ5 ϕ10 ϕ15

1 Min 30.6 1432 814 1.70 0.152 0.131 0.115 0.072 0.032 0.023

10 Min 10.1 410 308 1.70 0.151 0.071 0.049 - - -

25 Min 5.26 202 144 1.76 0.118 - - - - -

1 Hour 4.34 142 53.1 1.94 0.031 - 0.030 - -0.029 -

1 Day 0.04 5.24 12.6 2.00 0.069 - - - - -

Table 1: Descriptive statistics of FTSE-100 returns at different sampling fre-

quencies. BL(10) denotes the Box-Ljung Statistic with 10 autocorrelations (18.31 critical

value at 95% conÞdence bound). DW denotes the Durbin Watson test. ρj denotes the

jth autocorrelation. The statistics are calculated using 10,000 observations for sampling

frequencies down to one hour and 2,400 observations for the daily frequency. The 95%

conÞdence bounds are therefore ± 0.02 and ±0.042 respectively. Entries which contain
the "-" symbol are not signiÞcant based on these bounds.

Mean Std.Dev. Skewness Kurtosis ADF(5)

Realized Variance 8.54E-5 2.57E-4 21.2 596 -16.2

Log of Realized Variance -9.98 0.962 0.558 4.11 -8.83

Daily Return 4.60E-4 9.28E-3 0.0628 5.29 -21.8

Standardized Daily Return 0.091 1.09 0.0362 2.23 -22.3

Table 2: Descriptive statistics for realized return variance and daily

returns. The column "ADF(5)" reports the augmented dickey fuller test

including a constant and 5 lags
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Model Sample d α1 β1 ζ+1 ζ−1 ζ+2 ζ−2 λ0 LogL AIC/T

ARFIMA I 0.446
(9.20)

0.422
(5.92)

-0.636
(8.41)

- - - - - -723 0.81

+ Returns I 0.415
(7.52)

0.302
(4.63)

-0.597
(7.33)

33.6
(20.1)

39.4
(21.5)

14.8
(8.86)

18.0
(9.77)

- -453 0.51

+ Volume I 0.481
(19.8)

0.317
(6.39)

-0.677
(15.3)

27.7
(16.8)

36.4
(20.6)

11.7
(7.31)

16.9
(9.64)

0.379
(13.6)

-366 0.42

ARFIMA II 0.487
(29.2)

0.401
(7.24)

-0.642
(13.1)

- - - - - -968 0.80

+ Returns II 0.484
(24.2)

0.327
(7.12)

-0.662
(16.0)

25.5
(20.5)

32.3
(24.2)

10.6
(8.52)

14.9
(11.2)

- -649 0.54

+ Volume II 0.489
(32.1)

0.339
(8.06)

-0.684
(19.4)

21.5
(17.7)

29.4
(22.7)

8.62
(7.22)

13.9
(10.9)

0.358
(15.3)

-537 0.45

Table 3: ARFIMA estimation results. Sample I runs from May 2, 1990 until June

15, 1997. Sample II runs from May 2, 1990 until January 11, 2000. d, α1, and β1 denote

the ARFIMA(1,d,1) model parameters. ζ+i , ζ
−
i , and λ0, are the regression coefficients of

corresponding to the ith lag of positive and negative returns and contemporeneous trading

volume respectively. The last two columns contain the value of the log likelihood function

and the Akaike information criteria. t-Statistics are reported in parenthesis.
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A.2 Micro Structure & Sampling Frequency
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Figure 1.1: 1990-2000 average daily realized FTSE-100 variance and

autocovariance bias factor
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Figure 1.2: Empirical (solid line) and aggregation implied (dotted line)

�Autocovariance Bias Factor�



Calulating, Modelling and Forecasting Realized Return Variance 25

A.3 The FTSE-100 Realized Variance

1990 1992 1994 1996 1998 2000
-14

-12

-10

-8

-6

-4

Figure 2.1: Log of realized variance
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Figure 2.2: Fractionally differenced (using

d=0.40) log realized variance series.
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Figure 2.3: Correlogram log realized variance

plus fractional implied correlations.
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Figure 2.4: Correlogram of fractionally

differenced log realized variance series
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Figure 2.5: logϕh versus log h
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Figure 2.6: GPH & Robinson estimate for d as

a function of the bandwidth m.
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A.4 Forecasting Performance
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Figure 3.1: Forecasted divided

by actual average realized variance
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Figure 3.2: Sum of squared errors of fore-

casted cummulative realized variance
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Figure 3.3: Forecast error standard deviation
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Figure 3.4: Density Geweke Porter Hudak estimates
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B Appendix: Theory

B.1 Temporal Aggregation & Systematic Sampling

Consider an ARMA(p,q) process

α (L)Xt = β (L) εt,

where α (L) and β (L) are lag polynomials of lengths p and q respectively. Consider the case

where the reciprocals of the roots of α (L) = 0, θ1, ..., θp, all lie inside the unit circle.

When Xt is a stock variable, Wei (1981) showed that by applying the operator S(L)

S(L) =

pY
j=1

1− θfjLf
1− θjL

to ARMA(p,q) process, the ARMA(p,r) model through which the Þltered subseries may be

represented is obtained. In this case, f denotes the systematic sampling frequency. When Xt
is a ßow variable, Wei (1981) showed that by applying the operator T (L)

T (L) = S(L)
1− Lf
1− L

to ARMA(p,q) process, the ARMA(p,r) model through which the Þltered subseries may be

represented is obtained. In this case, f denotes the temporal aggregation frequency. The

moving average lag length r is given by the integer part of p + q−p
f
and for large f will be

equal to p or p− 1, depending on whether q ≥ p or q < p.
Note that although the order of the autoregressive part of the ARMA model remains the

same under systematic sampling or temporal aggregation, the magnitude of the autoregressive

coefficients decrease exponentially with f . Hence, in the limit the autoregressive part will

disappear. Moreover, for temporal aggregation, the term 1−Lf
1−L will dominate the MA part

and hence the limit model is an ARMA(0,0) or equivalently white noise.

B.2 Fractional Integration

A time series, Xt is said to be fractionally integrated of order d, if after applying the differ-

ence operator (1 − L)d it follows a stationary ARMA(p,q) process where p and q are Þnite
nonnegative integers. The concept was developed by Granger (1980, 1981) and Granger and

Joyeux (1980). A typical feature of a fractionally integrated or long memory process is that
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the effect of a shock to the process is highly persistent but decays over time. This, as opposed

to I(1) processes where a shock has inÞnite persistence or at the other extreme I(0)-processes

in which the effect of a shock to the system decays exponentially fast. Moreover,note that the

fractional difference operator takes care of the long run dynamics while the ARMA structure

can account for the short run dynamics. The ARFIMA(p,d,q) model can be written as

α(L)(1− L)dXt = β(L)εt, (4)

where α(L) is a lag polynomial of order p and β(L) of order q. Note that the ARMA(p,q)

and Integrated ARMA(p,q) models are special cases of (4) for d = 0 and d = 1 respectively.

Using a binomial18 or Taylor-like expansion (around L = 0), the fractional difference operator

can be expressed as follows:

(1− L)d = 1− dL− 1
2
d(1− d)L2 − 1

6
d(1− d)(2− d)L3 − . . .

=
∞X
h=0

Γ(h− d)
Γ(h+ 1)Γ(−d)L

h

= 1+
∞X
h=1

Qh
n=1(n− 1− d)

h!
Lh (5)

Using Stirling�s formula19 it can be shown that:Qh
n=1(n− 1− d)

h!
=

Γ (h− d)
Γ (−d)Γ (h+ 1) ∝ h

−d−1

for h large. Moreover, for d < 1
2
and d 6= 0, it can be shown that:

ϕh = corr(Xt, Xt−h) =
Γ(1− d)
Γ(d)

Γ(h+ d)

Γ(h+ 1− d) ∝
h large

h2d−1 (6)

and hence the decay of the correlogram is hyperbolic, as opposed to an exponential decay for

an I (0) process. For d = 0, ϕh = 0 for h > 0. The process is stationary and long memory for

0 < d < 0.5. The process is stationary and intermediate memory when −0.5 < d < 0. For
d ≥ 0.5, the process is non-stationary.

18The Binomial Theorem states that (1 − L)d = P∞
h=0

Ã
d

h

!
(−1)hLh where

Ã
d

h

!
(−1)h = Γ(h −

d)/ [Γ(−d) · Γ(h+ 1)] and Γ(·) is the Gamma function for which it holds that Γ(x) = (x− 1) · Γ(x− 1)
19Stirling�s formula states that Γ (h) ≈ √2π · hh−1/2e−h for h large and hence Γ(h+a)

Γ(h+b) ≈ ha−b.
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B.2.1 Log-Periodogram Regressions

Several two step procedures have been proposed to estimate the fractionally integrated ARMA

model. The main idea is to estimate the fractional parameter, d, in the Þrst step while

in the second step this estimate can be used to fractionally difference the observed series,

transforming it into an ARMA process of which the parameters can be obtain straightforwardly

by ordinary least squares. Geweke Porter-Hudak (1983, GPH hereafter) propose to estimate

d by a log-periodogram regression which is described below. Consider (1− L)dXt = εt where
εt is a stationary linear process with spectral density function fε (λ) which is Þnite, bounded

away from zero and continuous on the interval [−π,π]. The spectral density function of {Xt}
is f (λ) = σ2

2π

£
4 sin2 λ

¤−d
fε (λ) or equivalently

ln f (λ) = ln
σ2fε (0)

2π
− d ln £4 sin2 (λ/2)¤+ ln fε (λ)

fε (0)
. (7)

DeÞne the harmonic frequency λj =
2πj
T
where T is the sample size and let I (λj) be the

periodogram at λj which is given by

I (λj) =
1

2πT

¯̄̄̄
¯
TX
t=1

Xte
iλjt

¯̄̄̄
¯
2

.

Rearranging terms and evaluating expression (7) at λj close to zero (the term ln fε(λ)
fε(0)

is

therefore negligible) the following expression is obtained:

ln I (λj) = ln
σ2fε (0)

2π
− d ln £4 sin2 (λj/2)¤+ ln I (λj)

f (λj)
. (8)

Therefore, the coefficient d can now be estimated as the slope coefficient in a least squares

regression of ln I (λj) on a constant and ln
£
4 sin2 (λj/2)

¤
for j = 1 + l, . . . ,m ¿ T. GPH

set l = 0 and require that the bandwidth parameter m increases at a slower rate than the

sample size. In many practical applications m is set to equal to the square root of the sample

size T . Robinson (1995a) provides the asymptotic behavior of the estimator. In addition,

Robinson (1995b) proposed an alternative estimator which is derived under weaker conditions

and proved to be asymptotically more efficient than the GPH estimator. This estimator, for

the fractional parameter, is given by the value of d that minimizes the following objective

function:

Q (c, d) =
1

m

mX
j=1

"
ln
¡
cλ−2dj

¢
+
λ2dj
c
I (λj)

#
,

where c > 0 and d is restricted to lie between −1
2
and 1

2
.
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B.2.2 Exact Maximum Likelihood

Motivated by the Þnding that the ARMA parameters are generally not estimated accurately

using a two step method, Sowell (1992) proposes an exact maximum likelihood procedure

that estimates all model parameters simultaneously. Let Σ denote the covariance matrix of

the joint distribution of {Xt}t=Tt=1 where Xt is assumed to follow an ARFIMA(p,d,q) process as

given by expression (4). The model parameters can be estimated by maximizing the following

log-likelihood function over the parameter space

logL
¡
d,α, β,σ2ε

¢
= −T

2
log (2π)− 1

2
log |Σ|− 1

2
X 0Σ−1X,

where Σij = ϕ|i−j| for i, j = 1, 2, . . . , T , is expressed in terms of the model parameter. Sowell

(1992) shows that the covariance matrix, needed for the estimation, is given by

ϕs = σ
2
ε

qX
l=−q

pX
j=1

ϑ (l)κjC
¡
d, p+ l − s,ϕj

¢
where

ϑ (l) =

min[q,q−l]X
s=max[0,l]

βsβs−l

and

κ−1j = θj

pY
i=1

(1− θiθj)
Y
m6=j

(θj − θm)

where θj denote the roots of α(L) and are assumed to lie outside the unit disk. Finally, the

expression for C is given by

C (d, h, θ) =
Γ (1− 2d)Γ (d+ h) £θ2pF (d+ h, 1; 1− d+ h; θ) + F (d− h, 1; 1− d− h; θ)− 1¤

Γ (1− d+ h)Γ (1− d)Γ (d)
where F (a, b; c; e) is the hypergeometric function.


